Parametric Resonance in Spherical Immersed Elastic Shells
نویسندگان
چکیده
We perform a stability analysis for a fluid-structure interaction (FSI) problem in which a spherical elastic shell or membrane is immersed in a 3D viscous, incompressible fluid. The shell is an idealized structure having zero thickness, and has the same fluid lying both inside and outside. The problem is formulated mathematically using the immersed boundary framework in which Dirac delta functions are employed to capture the two-way interaction between fluid and immersed structure. The elastic structure is driven parametrically via a time-periodic modulation of the elastic membrane stiffness. We perform a Floquet stability analysis in the case of both a viscous and inviscid fluid, and demonstrate that the forced fluid-membrane system gives rise to parametric resonances in which the solution becomes unbounded even in the presence of viscosity. The analytical results are validated using numerical simulations with a 3D immersed boundary code for a range of wavenumbers and physical parameter values. Moreover, we propose a benchmark computation that is supported by our analytical results and which other FSI software developers can use to validate their simulations. Finally, potential applications to biological systems are discussed, with a particular focus on the human heart and investigating whether or not FSI-mediated instabilities could play a role in cardiac fluid dynamics.
منابع مشابه
PARAMETRIC RESONANCE IN IMMERSED ELASTIC STRUCTURES, WITH APPLICATION TO THE COCHLEA by
Examples of fluid motion driven by immersed flexible structures abound in nature. In many biological settings, for instance a beating heart, an active material generates a timedependent internal forcing on the surrounding fluid. Motivated by such active biological structures, this thesis investigates parametric resonance in fluid-structure systems induced by an internal forcing via periodic mod...
متن کاملParametric Resonance in Immersed Elastic Boundaries
In this paper, we investigate the stability of a fluid-structure interaction problem in which a flexible elastic membrane immersed in a fluid is excited via periodic variations in the elastic stiffness parameter. This model can be viewed as a prototype for active biological tissues such as the basilar membrane in the inner ear, or heart muscle fibers immersed in blood. Problems such as this, in...
متن کاملCircumferential-wave phase velocities for empty, fluid-immersed spherical metal shells.
In earlier studies of acoustic scattering resonances and of the dispersive phase velocities of surface waves that generate them [see, e.g., Talmant et al., J. Acoust. Soc. Am. 86, 278-289 (1989) for spherical aluminum shells] we have demonstrated the effectiveness and accuracy of obtaining phase velocity dispersion curves from the known acoustic resonance frequencies. This possibility is offere...
متن کاملEffect of Exponentially-Varying Properties on Displacements and Stresses in Pressurized Functionally Graded Thick Spherical Shells with Using Iterative Technique
A semi-analytical iterative method as one of the newest analytical methods is used for the elastic analysis of thick-walled spherical pressure vessels made of functionally graded materials subjected to internal pressure. This method is accurate, fast and has a reasonable order of convergence. It is assumed that material properties except Poisson’s ratio are graded through the thickness directio...
متن کاملA Parametric Study for Vibration Analysis of Composite Cylindrical Shell Resting under Elastic Foundation: Analytical and Numerical Methods
The aim of this study is to investigatethe effective parameters on vibrations of circular cylindrical shells with fixed rotary speed andresting elastic foundation by means of analytical and finite element numerical simulation. First, the governing equations are derived using the theory of Donnell, considering the centrifugal forces,Coriolis acceleration, and the initial annular tension. Then, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 76 شماره
صفحات -
تاریخ انتشار 2016